Diversification in wild populations of the model organism Anolis carolinensis: A genome‐wide phylogeographic investigation
نویسندگان
چکیده
The green anole (Anolis carolinensis) is a lizard widespread throughout the southeastern United States and is a model organism for the study of reproductive behavior, physiology, neural biology, and genomics. Previous phylogeographic studies of A. carolinensis using mitochondrial DNA and small numbers of nuclear loci identified conflicting and poorly supported relationships among geographically structured clades; these inconsistencies preclude confident use of A. carolinensis evolutionary history in association with morphological, physiological, or reproductive biology studies among sampling localities and necessitate increased effort to resolve evolutionary relationships among natural populations. Here, we used anchored hybrid enrichment of hundreds of genetic markers across the genome of A. carolinensis and identified five strongly supported phylogeographic groups. Using multiple analyses, we produced a fully resolved species tree, investigated relative support for each lineage across all gene trees, and identified mito-nuclear discordance when comparing our results to previous studies. We found fixed differences in only one clade-southern Florida restricted to the Everglades region-while most polymorphisms were shared between lineages. The southern Florida group likely diverged from other populations during the Pliocene, with all other diversification during the Pleistocene. Multiple lines of support, including phylogenetic relationships, a latitudinal gradient in genetic diversity, and relatively more stable long-term population sizes in southern phylogeographic groups, indicate that diversification in A. carolinensis occurred northward from southern Florida.
منابع مشابه
Out of Florida: mtDNA reveals patterns of migration and Pleistocene range expansion of the Green Anole lizard (Anolis carolinensis)
Anolis carolinensis is an emerging model species and the sole member of its genus native to the United States. Considerable morphological and physiological variation has been described in the species, and the recent sequencing of its genome makes it an attractive system for studies of genome variation. To inform future studies of molecular and phenotypic variation within A. carolinensis, a rigo...
متن کاملMulti-Locus Phylogeographic and Population Genetic Analysis of Anolis carolinensis: Historical Demography of a Genomic Model Species
The green anole (Anolis carolinensis) has been widely used as an animal model in physiology and neurobiology but has recently emerged as an important genomic model. The recent sequencing of its genome has shed new light on the evolution of vertebrate genomes and on the process that govern species diversification. Surprisingly, the patterns of genetic diversity within natural populations of this...
متن کاملOut of Cuba: overwater dispersal and speciation among lizards in the Anolis carolinensis subgroup.
Overwater dispersal and subsequent allopatric speciation contribute importantly to the species diversity of West Indian Anolis lizards and many other island radiations. Here we use molecular phylogenetic analyses to assess the contribution of overwater dispersal to diversification of the Anolis carolinensis subgroup, a clade comprising nine canopy-dwelling species distributed across the norther...
متن کاملLizards and LINEs: Selection and Demography Affect the Fate of L1 Retrotransposons in the Genome of the Green Anole (Anolis carolinensis)
Autonomous retrotransposons lacking long terminal repeats (LTR) account for much of the variation in genome size and structure among vertebrates. Mammalian genomes contain hundreds of thousands of non-LTR retrotransposon copies, mostly resulting from the amplification of a single clade known as L1. The genomes of teleost fish and squamate reptiles contain a much more diverse array of non-LTR re...
متن کاملTemperature-induced plasticity at cellular and organismal levels in the lizard Anolis carolinensis.
Among ectotherms, individuals raised in cooler temperatures often have larger body size and/or larger cell size. The current study tested whether geographic variation in cell size and plasticity for cell size exist in a terrestrial, ectothermic vertebrate, Anolis carolinensis Voigt, 1832. We demonstrated temperature-induced plasticity in erythrocytes and epithelial cells of hatchlings lizards d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016